Cheese's Concentrated Solar


Adds concentrated solar energy based around heliostat mirrors, which can point at solar power towers to generate heat for heliothermal energy production, or solar lens towers to generate giant lasers.

Content
4 months ago
1.1 - 2.0
46.3K
Combat Power

g Power Storage

3 months ago

My tired old brain isn't mathing. Could one of you peppy young geniuses provide steam tank volume per mirror(s) & accumulator(s) per mirror(s) calculations? I would most appreciate it. (The author adding them to the 'Information' tab would be useful for other users.)

3 months ago
(updated 3 months ago)

I don't know the exact calculations. However I've made a blueprint that produces 40.7MW of power consistently.

It has 6 boilers to consume the entire 60MW output, a tank to store enough steam to last through the night, and 7 steam turbines. Water input is at the bottom. It uses the max (546) heliostat mirrors for a single power tower, and is entirely contained within the mirror radius of the tower.

I just tested out different configurations in the editor using the time warp feature to see what worked.

0eNql3c1uG8kZheFbGXAtDbr++scXkF1WWWRhGANa7tjESJRA0fEMDN17KDuxNDFfVtU5q8HI8uMm2dUf+6tT1V83728/rw+H3f64efN1s7u53z9u3rz9unncfdxvb59/tt/erZs3m5tPN4/Xn9bb3f3jcXu8vtsdDveHzdPVZrf/sP6xeROe3l1t1v1xd9yt34lv//Pnb/vPd+/Xw+kXri5TV5uH+8fT377fP/+rJ/E6lV/L1ebPzZvx1/L0dPWTGPvFeFlM3WJcLou5Xxwvi6VfTJfFsV8cLotTtximy+LcL+bL4tIvhstiGLrJuSL2D5rKmAn9g6YyZkL3oKm9jd1jpvJJh+4hUzkZQ/eICZUBE7pHTKgM6tA9YkLlwhO6R0yoXBxj94CJlZMxdg+YWCsy3QMmVgZ17B4wqTJiYveISZUhE4terRcgR71cEznp9ZrIWS/YRC56xQYyDXrJJjLoNZvIqBdtIpNetYnMctUmschVm8RRrtokTmrVJnBWqzaBi1q1AcyDXLVJDHLVJjHKVZvEJFdtErNctUksctUmcZSrNomTXLVJnOWqTeKiV+0Q4XZz0Ms2mkGv22hGvXCjmfTKjWbWSzeaRa/daI568UZz0qs3mrNcvpFc5PpN5DjIBRzJoFZwFKNawlFMag1HMctFHMkiV3EkR7mMIznJdRzJWS7kSC5yJSdyGuRSjmSQazmSUS7mSCajmhcws1HNySxGNSdzNKo5mZNRzcmcjWpO5mJUczDnwajmZAajmpMZ9WpOZNKrOZFZr+ZEFrmakzjK1ZzESa7mJM56NSdy0as5kMugV3Mig17NiYx6NScy6dWcyKxXcyKLXs2JHPVqTuRkVPMZzNmo5mQuRjWfaWJ0MMo5osGo54hGo6AjmoyKjmg2SjqixajpiI56UUdz0qs6mrNe1tFc5LpOZH/MoPqx9+cMqqdnf9AgVMeREDWoDvj+tEGoXpn6AwehegntzxzE6snZnzqI1UHUnzuI1cHenzxI1VHUnz1I1WEUjYxbDIQaMTdGjaQbo0bYjVEj78aoEXlj1Ei9MWoE3xg1sm+IJj39xqaef2NTT8CxKWfgmJRTcEzKOTgm9SQcm3oWjk09DcemnodDM+uJODb1TBybeiqOTT0Xx6aejGPTyMbFTKiRjmPUyMcxaiTkGDUycogWIyXHqJGTY9RIyjFqZOUY1dNybOp5OTb1xBybcmaOSTk1x6Scm0Ny1JNzbOrZOTb19Byben6OTT1Bx6aeoWNTT9Gxqefo2NSTdGwaWbo40SoPI0zHqJGmY9SI0zFq5OkYNQJ1jBqJOkaNSB2jRqaOUT1Ux6aeqkNz1mN1bMq5OiblYB2TcrKOST1ax6aerWNTD9exqafr2NTjdWzq+To0Fz1gx6aesGNTj9ixaWTs0kCoEbJj1EjZMWrE7Bg1cnaMGkE7Ro2kHaFxMKJ2jBpZO0b1sB2betqOTT1ux6act2NSDtwxKSfumNQjd2zqmTs0gx66Y1NP3bGpx+7Y1HN3bOrBOzb15B2bevSOTSN7lxKhRviOUSN9h2g00neMGuk7Ro30HaNG+o5RI33HqJG+Y1RP37Gpp+/Y1NN3bMrpOySTnL5jUk7fMamn79jU03ds6uk7NvX0HZt6+o5NPX3Hpp6+Y1NP36GZ9fQdm0b6LuHOOkb6jlEjfceokb5j1EjfMWqk7xg10neMGuk7Ro30HaJFT9+xqafv2NTTd2zK6Tsm5fQdk3L6jkk9fcemnr5jU0/fsamn79Ac9fQdm3r6jk09fcemnr5jU0/fsWmk7xJuTWek7xg10neMGuk7Ro30HaKTkb5j1EjfMWqk7xg10neMvgyoh93Desb4cQLNRJRmAo9i/Atxfby//ni4/7z/cOlLxvPxXG0+7A7rzfc/D/GsPdUOr/5xzjWiOiBeZRWqr7DgK8xn95ccakeXax/hq4TCeSJVhdj8+nLnB/gqmHD+4KoX4zk3H9zU+d7Xzv3qiTGPFWGuClOrgB+eMYODR2XM4OC2p8YMDprGDA6axgwOmsYMDprGDA6axgwOmsYMDppTa9XKNAm0zM1EIOJllHxaT69n/ePm03b/cT17d/1C1a+a6VVo4JtcKVx0hGkIrbWP3qf0KhVw6VBK9VBSk5OrTm5/039gw3mqNB1Sqh7S/53hj/e328P1w/2X9XCqVl/OHtpQRafm15kqL3NueZn1V7m0MLHGhKHxCwGeka+m7S8cSPWEDE0ndvV8DKn5c5rgGpDPurnxiwEfWWkV8J0e9ZvrnAid9JtrRmf95prRRb+5RlSZfU9VNOg314xG/eaa0aTfXDOa9ZtrRpvvjJkYm4lIRPMNMB9F8w0wH8XSTNBRpEGo2+mvF8r5LBz6C2WTG1sLFb7k1ntffN9TbrxD5WNoLgJ4DK33uHwMk3yHyuYs36Gyuch3qGgKTxmoXlaEFfzVAiqs4K+e//3z2rF6Lgkr+KtX+v5Z7VQtSbn90p+JaL/JLUTM/a3Zb1jDPWpemisTvcIytB/e+BprOLwS+nu2P7/0s1/NS2zt2fIrT80Efbal2vxPVaK0v0ex8/Qo1QEwVN+kqf3wAp4e5z/CjoExVN/G9umBoe9MG2s3y6F2bGPoP7bGETbWhkGsHlxqnLlgIbcKdJKNpXvuo3UIjO0TY6Xv9B2n7jmR1jNubv3GiW/o0vp9kT7UaWgV6BgmI/uX6WGwk5H9Y9TI/jFqZP8YNbJ/jBrZP0aN7B+jRvaPUSP7h+isb8/Cpr49C5v69ixs6tuzsKlvz8Kmvj0Lm/r2LGzq27OwqW/PwqaxPUvGJw4a27MwamzPwqixPQujxvYsjBrbszBqbM/CqLE9C6PG9iyM6tuzsKlvz5LxgZsv4+nxuG7vro+fD+93+/XS7dxMVmi16pS8HQu/Unk7Fib17VjY1LdjYVPfjoVNfTsWNvXtWNjUt2NBM+jbsbCpb8fCpr4dC5uptYdUAhG1BkFdKI09GBaMafQSCTWm0Rk1ptEZNabREXWm0Rk1ptEZNabRGTWm0Rk1ptEZLfKXEzZH+csJm9OrLxT3h+3H9fq43f9+oRP+jap21PKr6fe79cPu8931env6C4fdzfXD/e3Fixoe66J+Y0Gyfx179RztX8ceqq9cWMheHfXCQvbq5UlYyF69jvYvZI/VC76wkL06koSF7NUR3z/dn6pXJmEhe3UY5cEo9YXQYJR6RKNR6hFNRqlHNBulHtFilHpER6PUIzoZpR7R2Sj1iC56qSdTWMheHU/CQvbqcCqxf0K5/DQlN5+lU2+ro2Q6SnkdO79weR07k/o6djb1dexs6uvY2dTXsaNprGNnU1/Hzqa+jp1NfR07m/o6djaLcP0YCXMaDtQmHZ2GA6JOwwFRp+FA6OQ0HBB1Gg6IOg0HRJ2GA6JOwwFRo+GAptFwQHPSv4WgOXd/VaDe66T3GOjoZr3HgKTRY0DT6DGgafQY0DR6DGgaPQY0jR4DmkaPAU2jx4Cm0WMgczF6DCPNUSxGj4FRo8fAqNFjYNToMTBq9BgYNXoMjBo9BkaNHgOjeo+BzDLoPQY29R4Dm1GdSWAyqVWeyaxWeSaLXOXZHOUqz+YkV3k2Z7nKs7nIVR5NIadQHUT9OYVYHexCTiFUzSRXeTazUeUzocWo8oiORpVHdDKqPKKzUeURXYwqT6gQb3ip8ogGo8ojGo0qj2jSqzyaWa/yaBa9yqM59t7DMzXJ1R3JWa7uSC56dSezP84QqgNdyDNUr0hCnqF66ezPM8TqSdmfZ4jVwSPkGaqDvD/PkKqjqD/PkKrDKM1GdZ8IXYzqTqiQaHip7ogGo7ojGo3qjmgyqjui2ajuiBajuiM6GtUd0Umv7mjOenVHc9GrO5k9Wx5Uz6OePQ5+YGNL6KAUeVEEH628KIJJfVEEm/qiCDb1RRFs6osi2NQXRbCpL4pAc9QXRbCpL4pgU18UwWZ3HGhciDJ6DNNAqNFjYNToMTBq9BgYNXoMjBo9BkQno8fAqNFjYNToMTCq9xjY1HsMbOo9BjZHdSaBSbnXwKTca2BS7zWgOeu9Bjb1XgObeq+BTb3XwKbea2BT7zWwqfca2NR7DWwavYYpEWr0GhBdjF4Do0avgVGj18Co0Wtg1Og1MGr0Ghg1eg2M6r0GNvVeA5t6r4HMcZCfTcuk/GxaJvVn07KpP5uWTf3ZtGzqz6ZlU382LZv6s2nZ1J9Ny6b+bFo0g/5sWja7dy+ZMlHRqO4jocmo7ohmo7ojWozqjuhoVHdEJ6O6Izob1R3RxajuhCqJhlBFg17d0Yx6dUcz6dUdzdzf/J+mlub/2B9rqH/8o/zFAUl9W3k29W3l2dS3lUcz6dvKs6lvK8+mvq08m/q28mzq28qzqW8rz+bLMNrt/7Xbn/7wurI10vT9YYj/+/XfHtfjcbf/+Pj8e/+lvmyP3x+XsR5uTv/i9uPph6eT4bjenX6yPX03ef7/k3Z3/+H510+v4HbdPh43T0/vrjZfTheTE/b27fNOJ+XqOaVc3l29/fbfq+dOY3l3+q3dCTv91fe3n9eHw25/PP1rt9v36+3pZ3n4+z9/+cfzM7N++dv2cHf6k3+vh8dvr6ScBk9eljKlkvIUn57+A/g3SXU=

New response